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Abstract. We propose a description of the electronic properties of Ce alloys as an inhomogeneous mixture
of two components: one containing magnetic Ce ions with an RKKY interaction JH between them, and
the other described as a collection of Kondo impurities with exchange interaction JK . Both JH and JK are
assumed to depend on a composition parameter X, with a Gaussian distribution around a value X0 (near
to the expectation value of X), related to the experimental composition parameter x of the alloy. When the
concentration of the Kondo impurities is large, the specific heat C displays non-Fermi liquid behavior over
a wide temperature range. The main qualitative features of C/T as a function of temperature T observed
in several Ce alloys are reproduced using simple JH(X) and JK(X) dependences.

PACS. 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phenomena – 75.40.Cx Static
properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.)

1 Introduction

Cerium alloys show a rich variety of magnetic and ther-
modynamic behaviors depending on the particular physi-
cal system in which the Ce atom is embedded. They may
display magnetic order, heavy fermion behavior, interme-
diate valence or non-Fermi liquid behavior [1]. These sys-
tems can be described in principle by the periodic Ander-
son model or the Kondo lattice model including effects of
disorder. However, even the simplest case of the homo-
geneous Kondo lattice remains not well understood after
more than 30 years of both theoretical and experimental
research.

The competition between magnetic order and single-
ion Kondo physics can be qualitative understood on the
basis of the Doniach phase diagram [2], in which the
effective magnetic RKKY exchange interaction between
nearest-neighbors varies as JH ∼ J2

K , being JK the Kondo
interaction, while the Kondo mixture of local and conduc-
tion electron spins is characterized by the Kondo temper-
ature, given by:

TK = W exp [−1/(ρJK)], (1)

where W is the band width and ρ is the density of states
per spin at the Fermi level. Then, for small JK the mag-
netic interaction dominates, while for large enough JK , the
formation of local Kondo singlets inhibits the formation
of magnetic order. However, this simple picture cannot
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explain the non-Fermi liquid behavior observed in sev-
eral systems, and the magnetic phase diagrams of many
Ce-lattice systems [3,4].

Based on the evolution of their magnetic phase bound-
ary, Sereni [4] has classified these alloys into three dif-
ferent types: A) those in which the magnetic ordering
temperature TN (usually corresponding to an antiferro-
magnetic ordering) tends to zero as a function of a com-
position parameter x. Exemplary systems for this group
are CeAu1−xCu5+x [5] and CeIn3−xSnx [6]. B) those in
which, despite the fact that TN (x) decreases, it is not
possible to trace experimentally the transition beyond
a certain concentration xc. This is due to the broaden-
ing and disappearance of the specific heat jump (and
electrical resistivity kink) at TN . This is the case of
Ce(PdxRh1−x)2Si2 [7] among other alloys [4]. C) those
in which TN is nearly independent of x until the transi-
tion disappears as in the previous case. An example for
this case is CeCu2+x(Si0.9Ge0.1)2−x [8].

Besides the previous considerations, the broadening of
the specific heat transition in most of these alloys, the in-
crease of the resistivity at intermediate compositions (like
in Ce(CuxRh1−x)2Si2 [9]), and its temperature depen-
dence [9], point out the importance of disorder in some of
these systems. Nevertheless, one has to take into account
that a similar evolution of the magnetic phase boundary is
observed under pressure, where the effect of disorder is not
expected [10]. A phenomenological model with a distribu-
tion of Kondo temperatures was able to fit the observed
non-Fermi liquid behavior in the field and temperature
dependence of magnetic susceptibility and specific heat in
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UCu5−xPdx [11]. It has also been shown that a random hy-
bridization between conduction and localized f electrons
leads to a finite probability of very small TK and non-
Fermi liquid behavior [12]. Furthermore, several authors
have studied models in which Kondo impurities interact
with random RKKY interactions between them [13–17].
These “spin-glass” models have led to good agreement
with experimental data in alloys at particular composi-
tions close to a quantum critical point [15–17]. It has been
argued that a Griffiths phase due to non-percolating giant
magnetic clusters is the origin of the observed non-Fermi
liquid behavior [15]. A two component model, one of which
is homogeneous and the other a set of non-percolating
magnetic clusters has explained the temperature and mag-
netic field dependence of transport and magnetic prop-
erties of Ce(Ru0·5Rh0·5)2 Si2 [17]. These studies are re-
stricted to compositions near the quantum critical point,
where non-Fermi liquid properties are observable. In an-
other work [18], a two-fluid model has been used to de-
scribe Mott-Hubbard metal-insulator transitions and local
moments in a narrow band. Very recently [19] a two-fluid
model has been shown to explain the specific heat, mag-
netic susceptibility and resistivity of Ce1−xLaxCoIn5. This
system is however different from ours in that the concen-
tration of Ce atoms is varied.

Concerning the magnetic transition, the specific heat
jump of several Ce and Yb compounds has been repro-
duced [20] using a simple theory for Kondo impurities in-
teracting through an exchange interaction [21]. The spe-
cific heat depends on the ratio TK/TN , where TN is the
Néel temperature. However, this theory does not lead to
a broadening of the specific heat jump.

In this work we describe the alloy as an inhomoge-
neous system. Fluctuations in the environment around
each Ce atom modify the Ce on-site energy with respect
to the Fermi level and the interatomic Ce-Ce distances.
In our simplified description, a fraction X of the system
consists of non-interacting Kondo impurities with an ex-
change constant JK . The rest of the system consists of
magnetic ions that interact with their nearest neighbors
with an exchange constant JH . The parameter X has a
Gaussian distribution around some valueX0 related to the
composition parameter x of the alloy. Due to the fact that
the detailed interplay between composition x and disor-
der is not well established, X0 is not necessarily identical
to x. The model is similar to the above mentioned spin
glass model. However, we assume that the magnetic ions
are always percolating and study the specific heat as a
function of X0.

We assume that JH decreases with X , while JK in-
creases, as suggested by experiment. As in a random walk,
we assume that the square of the distribution width is
AX0(1−X0) and A is an adimensional parameter directly
related to the disorder in the system. The picture that
we have in mind is that the local environment of each
Ce (or magnetically unstable rare earth) atom affects the
energy of the f level and its hybridization with the con-
duction band. These two parameters determine whether
the magnetic moment survives or is “screened” by the

Kondo effect. The proposed model is described in Sec-
tion 2. Section 3 contains the result and comparison with
experiment. Section 4 includes discussion and summary.

2 The model

We describe the free energy of the system per rare earth
atom as a weighted average of magnetic and Kondo con-
tributions with a certain distribution:

F (X0) =
∫
dX P (X,X0)

× [(1 −X)FM (X) +XFK(X)]. (2)

FM is the contribution of the magnetic ions to the free
energy, corresponding to an exchange interaction between
nearest-neighbors, and is evaluated using the following
Hamiltonian:

HM =
∑
〈i,j〉

JH(X)�Si · �Sj , (3)

where �Si is the spin of the magnetic ion i, assumed 1/2.
FK is the free energy of an impurity described by

the usual Kondo Hamiltonian with exchange interaction
JK(X) and with TK given by equation (1).

The distribution of X is given by:

P (X,X0) = θ(X)θ(1 −X)e−
(X−X0)2

σ2 N(X0)

σ2 = AX0(1 −X0), (4)

where N(X0) is a normalization factor to ensure that∫ 1

0
P (X,X0)dX = 1 and θ(X) the step function.
In the usual mean-field treatment of HM , for a ferro-

magnet or an up-down antiferromagnet, the spin-flip part
of HM is neglected and the solution is the same as that
of an Ising model. Also the antiferromagnetic case for a
bipartite lattice (positive JH) can be mapped into a ferro-
magnetic case (negative JH) inverting the spins of one sub-
lattice. To solve HM we therefore considered a ferromag-
netic Ising model in the Bethe-Peierls approximation [22],
which allows us to consider a short range order parameter
α = P (++) + P (−−) − 2P (+−), where P (++) indicates
the probability of finding two neighboring spins pointing
up. The meaning of the other terms, P (−−) and P (+−), is
clear. This leads to a better description of the specific heat
than the usual mean-field approach, particularly above the
transition temperature TN . This approximation has been
used before in several problems, like the description of
disordered alloys [23,24] and spin systems [25]. Follow-
ing Kikuchi [26] and for zero magnetic field, FM is ob-
tained minimizing the following expression in terms of the
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magnetization m = 〈Sz〉 and the parameter α:

F̃M (m,α) = −|JH |zα
8
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where z is the coordination number, which we have taken
as 6, corresponding to the simple cubic arrangement of
Ce atoms in CeIn3−xSnx [6].

From the minimization conditions ∂F̃/∂m = 0 and
∂F̃ /∂α = 0 for m �= 0 but m → 0, one obtains an ana-
lytical expression for the transition temperature in both
cases (ferromagnetic for JH < 0 or antiferromagnetic for
JH > 0):

TN =
|JH(X)|

2 ln (z/(z − 2))
. (6)

The magnetic contribution to the specific heat is

CM = −|JH(X)|z
8

∂α

∂T
. (7)

The free energy of the impurity Kondo model FK

is known from the Bethe ansatz exact solutions [27,28].
In particular, the specific heat has been calculated by
Desgranges and Schotte [29] and by Rajan, Lowenstein
and Andrei [30]. The former authors have shown that the
result is quite similar to that of a resonant level model of
width TK . Then, in order to simplify the numerical inte-
gration in equation (2) we take this form for the Kondo
contribution to the specific heat [31]:

CK =
kB

π

TK

T

[
1 − TK

2πT
ψ′

(
1
2

+
TK

2πT

)]
, (8)

where ψ′(x) is the derivative of the digamma function. The
total specific heat is given by the weighted average equa-
tion (2) with the free energies replaced by corresponding
specific heat contributions.

3 Results

We have applied this model to describe the ground state
properties of some Ce systems belonging to the groups
identified as A and B, according to the classification in-
troduced in Section 1. A characteristic of the systems in-
cluded in group A is the linear decrease of TN with X0.
Taking into account equation (6) this suggest the following
dependence of JH(X):

JH(X) =

{
J0

H

(
1 − X

Xc

)
if X ≤ Xc

0 if X > Xc.
(9)

Table 1. Parameters of the model for a system belonging to
case A (see Fig. 1).

Parameter Value

Xc 0.65

J0
H 8.00 K

J0
K 0.68 eV

J1
K 0.728 eV

A 0.25

W 6 eV

ρ 1/6 eV−1

The meaning of Xc is the concentration beyond which no
magnetic Ce ions exist. In addition, we assume:

JK(X) = J0
K + (J1

K − J0
K)X, (10)

as previously postulated for U alloys [11].
Having in mind the system CeIn3−xSnx, we take the

parameters listed in Table 1. The concentration x=1 cor-
responds to the non-magnetic CeIn2Sn composition.

For these parameters one has TN = 10.2 K (for
X0 = 0) and TK = 10.3 K (for X0 = 1). We want to
stress that the qualitative aspect of the result is not sensi-
tive to the parameters as long as TK(1)/TN(0) ≈ 1. This
ratio controls the relative weight of both contributions to
the specific heat and turns out to be the most relevant
parameter. The temperature dependence of the resulting
specific heat is shown in Figure 1 for several values of X0.
For X0 = 0 one has a well defined magnetic transition. As
X0 increases, the specific heat jump broadens due to dis-
order. For X0 substantially larger than Xc or X0 ≈ 1, the
magnetic contribution to the specific heat becomes small
and the inhomogeneity leads to a temperature range in
which C/T displays an approximate lnT behavior, charac-
teristic of a non-Fermi liquid, in agreement with previous
studies for U systems [11].

For example, forX0 = 0.8 (see Fig. 2) the linear behav-
ior of C/T vs. lnT extends between 1 and 10 K approxi-
mately. However, we must warn the reader that in several
of these alloys, the lnT behavior is related to the proxim-
ity to a quantum critical point, which is not described by
our approach.

Another feature of the curve is that for X ≤ Xc, after
an initial rapid decrease of the maximum value of C/T as
a function of X0, it remains approximately constant upon
further increase of X0.

These general features of C/T agree very well with ex-
perimental observations performed on Ce-systems belong-
ing to group A, even with a semiquantitative agreement
(see Fig. 1). A specific feature of CeIn3−xSnx which is not
explained by our model is the presence of two peaks for
x ≥ 0.3. The smallest one is due to a weak first order
transition. The explanation of these details is beyond the
scope of the present work.

A general feature of the systems classified in groups B
and C is the disappearance of the maximum of C/T at
a finite non-zero temperature. These features are in clear
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Fig. 1. Specific heat divided by temperature as a function
of temperature for several compositions. a) experiments on
CeIn3−xSnx [6]. b) our results for parameters corresponding
to group A (see Tab. 1).

contrast with those of group A where, when approach-
ing Xc, the value of the temperature for which C/T is
maximum depends linearly with X0 and reaches T = 0 at
X0 = Xc. If the experimental phase diagrams of groups
B and C were interpreted in terms of an homogeneous
system, either the second order transition line should fall
abruptly between two neighboring compositions, or the
transition becomes first order with a very narrow two-
phase field. However, in our picture of an inhomogeneous
system, the phase boundary is not well defined, since for
any intermediate X0 there is a possible coexistence of mi-
croscopic regions of the alloy with order parameter m = 0
and m �= 0.

To model a homogeneous system in which TN falls
abruptly to zero at Xc, we have modified equation (9)
and assumed:

JH(X) =

{
J0

H

(
1−X/Xc

1−BX

)
if X ≤ Xc

0 if X > Xc

. (11)

Fig. 2. Specific heat divided by temperature as a function of
lnT for X0 = 0.8. Dashed line is a linear fit of a mesh of points
taken between 1 K and 10 K.

Fig. 3. Magnetic critical temperature as a function of X, for
a system with nearest-neighbor interaction JH given by equa-
tion (9) with Xc = 0.65 (case A, full line) and equation (11)
with Xc = 1 (case B, dashed line).

This leads to the dependence of TN vs. X0 shown in
Figure 3. We also have changed the parameters as indi-
cated in Table 2, and in this case we have TN (0) = 37.0 K
and TK(1) = 13.7 K.

The resulting specific heat is shown in Figure 4. One
can see that the maximum in C/T decreases slightly with
X0 until, for 0.8 < X0 < 0.9, the relative maximum
near TN disappears and C/T shows a monotonic behav-
ior. These results are in qualitative agreement with ex-
periments on systems belonging to group B [3,4,7]. For
the specific system chosen for the comparison, the two-
peak structure clearly visible in the theory is only weakly
present for x = 0.15 and x = 0.2. The large value of C/T
for T → 0 can be reduced by increasing TK , but this leads
to an increase of C/T for large T . The arrows in Figure 4
show the position of the critical temperature TN for an
ideal homogeneous system.
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Fig. 4. Same as Figure 1 for parameters corresponding to
group B. The experimental system is Ce(PdxRh1−x)2Si2 [7].
The arrows show TN given by the full line of the previous
figure for X = X0.

Table 2. Parameters of the model for the case B (see Fig. 4).

Parameter Value

Xc 1.00

J0
H 20.00 K

B 0.9

J0
K 0.75 eV

J1
K 0.0 eV

A 0.03

W 6 eV

ρ 1/6 eV−1

Some features seem to be essential to obtain the char-
acteristic behavior of group B: i) the curvature in JH(X).
A linear dependence leads to an excessively fast shift of
the maximum in C/T at low values of X0, like in Fig-
ure 1. ii) a lower ratio TK(1)/TN(0). This produces a
steeper Kondo contribution to C/T (decreasing with in-
creasing T ), which leads to the disappearance of the C/T
maximum for large enough X . A weaker disorder is also
necessary to decrease the value of C/T for X > 0 near
TN(X = 0). iii) a constant value of TK as composition is
varied (i.e. J(X) = J0

K). This feature is consistent with

the fact that the magnetic entropy (obtained integrating
C(T )/T ) for the highest T shown in the figure is indepen-
dent of concentration [4].

A remarkable experimental feature in the alloys of
group B is that the tail in C/T after the jump (or the
bump) is practically independent of composition. In our
case, the increase in this tail due to the larger contri-
bution of non-magnetic Kondo ions overcomes approxi-
mately the decrease of the effect of short-range magnetic
correlations as X0 increases. This partial compensation
takes place in our model if TK(1)/TN(0) is in the range
1/4 < TK(1)/TN(0) < 1/2 approximately.

4 Discussion and summary

We have proposed an inhomogeneous model to describe
the thermodynamics of some Ce alloys near their region
of magnetic instability. The model contains a fraction of
Ce atoms which interact magnetically among them, and
the rest which behave as Kondo impurities with mag-
netic moments compensated by the spin of conduction
electrons.

The model explains naturally the observed broadening
of the specific heat jump, and the “disappearance” of the
magnetic transition in some alloys. Since the transition
between an ordered and a disordered phase cannot termi-
nate at a point of non-zero finite parameters, the above
mentioned disappearance seems very difficult to explain
within a homogeneous picture. As pointed out before [11],
disorder plus a linear dependence of the Kondo interac-
tion with composition leads to non-Fermi liquid behavior
of thermodynamic properties.

In addition, the main qualitative features of the
observed specific heat in Ce alloys classified into
group A [3,4,6] are described by the model. The relevant
parameter for this description is TK(1)/TN(0) ≈ 1.

In order to explain the independence of the tail of C/T
with composition observed in alloys of group B, the model
requires that the Néel and Kondo temperatures of respec-
tive extreme compositions should fall not too far from
TK(1)/TN(0) ≈ 1/3 and, in addition, some restrictions
on the degree of disorder and the dependence of JH with
composition.

In spite of this shortcoming, we believe that the model
contributes to the understanding of alloys containing Ce
and possibly Yb, U or other magnetically unstable rare
earths. A more quantitative theory requires a more de-
tailed microscopic knowledge of the effect of disorder on
the exchange parameters JH and JK , and assumptions of
our model.

For example we have assumed a constant nearest-
neighbor exchange interaction JH decreasing with the
amount of Kondo compensating atoms. A more realis-
tic description seems to be to keep the same JH but to
eliminate magnetic ions at random. This makes contact
with the “spin-glass” description of the non-Fermi liquid
phenomena [13–17]. The concept of a Griffiths phase is
based on the existence of isolated magnetic clusters, orig-
inally proposed by Griffiths for Ising ferromagnets with
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nearest-neighbor interactions [32]. Here we assume that
magnetism extents to the whole system. This is consis-
tent with the long-range nature of the RKKY interaction.
Although our assumptions are likely to be an over simpli-
fication of the actual effect of disorder, comparison with
experiment is encouraging and suggests that the relevant
mechanisms are included in this model.
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